Effective Distribution of Large Scale Datasets Clustering Based on Map Reduce
نویسنده
چکیده
Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate. Challenge sinclude analysis, capture, data curation,search, sharing, storage, transfer, visualization, querying andinformation privacy. The term often refers simply to the use of predictive analytics or certain other advanced methods to extract value from data, and seldom to a particular size of data set. Accuracy in big data may lead to more confident decision making, and better decisions can result in greater operational efficiency, cost reduction and reduced risk .Data that are generated from variety of sources with massive volumes, high rates, and different data structure are collectively known as Big Data. MapReduce framework was built as a parallel distributed programming model to process such large-scale datasets effectively and efficiently. Big Data software analysis solutions were implemented on MapReduce framework, describing their datasets structures and how they were implemented with MongoDB as NoSQL Database. NoSQL encompasses a wide variety of different database technologies that were developed in response to the demands presented in building modern applications. MongoDB stores data using a flexible document data model. Documents contain one or more fields, including arrays, binary data and sub-documents. Thus, the demand for building a service stack to distribute, manage, and process massive data sets has risen drastically. In this paper, we investigate the Big Data Broadcasting problem for a single source node to broadcast a big chunk of data to a set of nodes with the objective of minimizing the maximum completion time. Big-data computing is a new critical challenge for the ICT industry. Engineers and researchers are dealing with data sets of petabyte scale in the cloud computing paradigm.
منابع مشابه
Evaluation of Updating Methods in Building Blocks Dataset
With the increasing use of spatial data in daily life, the production of this data from diverse information sources with different precision and scales has grown widely. Generating new data requires a great deal of time and money. Therefore, one solution is to reduce costs is to update the old data at different scales using new data (produced on a similar scale). One approach to updating data i...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملClustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers
In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کامل